CCE201: Solid State Electronic Devices

Lecture 01: Introduction

Prepared By Dr. Eng. Sherif Hekal Assistant Professor, CCE department

10/20/2018 1

CCE201

Course Information

Course Name: Solid State Electronic Devices

Course Code: CCE201

Course Materials are on my website:

http://www.bu.edu.eg/staff/sherifsalah3

Contact me

- Room number : SB5-05
- Email address:
 - Sherif.salah@feng.bu.edu.eg

Lecture 01

My rules

No eating
No drinking
Silence except for asking questions
Shutdown your Mobile, Tablet, etc. and put in your pocket.

Course meeting time & Location

		Number	Day	Time	Location
		/ week			
Contact hours	lectures	2 h	Saturday	09:00-11:00	Room ??
	tutorial	2 h	Saturday	11:00-13:00	Room ??

Lecture 01

CCE201: Course Info

Course Title	Solid State Electronic Devices						
Course Code	CCE201						
Credit Hours	3						
Contact Hours	Lecture	2	Tutorials	2	Lab.	-	
Prerequisite(s)	EMP104						
Topics	Basics of semiconductor physics – Fermi-Dirac distribution – Carriers concentrations						
	- Intrinsic and Extrinsic materials - Charge neutrality - Currents in Semiconductors						
	(drift current – diffusion current) – Semiconductor parameters (mobility, Scattering,						
	lifetime) – Hall effect. – PN junction theory – Diode IV characteristics – large and						
	small analysis – Analog and digital diode applications (Rectifiers, Clipping circuits,						
	Clamping Circuits, multipliers) – Special purpose diodes (Light emitting diodes, photo						
	diodes, Zener diode and its applications)- Basics of Bipolar junction transistors (BJT)						
Lecture 01	and field effect transistors (FET) - physical operations, characteristics, specifications.						

CCE201

Course Assessment

Assessment Type	Percentage	Time
Midterm1	30%	Week 07
Midterm2	20%	Week 12
Attendance, Assignments	10%	
Final Exam	40%	Week 16
Total mark	100%	

Conditions of the success are:

- 1- getting 60% of the total mark.
- 2- getting at least 30% of the full mark of the final exam.

Lecture 01

Course Assessment

Percentage	Grade	Points
Score $\geq 97\%$	A+	4
$93\% \le \text{Score} < 97\%$	А	4
$89\% \le \text{Score} < 93\%$	A-	3.7
$84\% \le Score < 89\%$	B+	3.3
$80\% \leq \text{Score} < 84\%$	В	3
$76\% \leq \text{Score} < 80\%$	В-	2.7
$73\% \le \text{Score} < 76\%$	C+	2.3
$70\% \leq \text{Score} < 73\%$	С	2
$67\% \leq \text{Score} < 70\%$	C-	1.7
$64\% \leq \text{Score} < 67\%$	D+	1.3
$60\% \le \text{Score} < 64\%$	D	1
Score < 60%	F	0
		10/20/20

Lecture 01

Syllabus

Weeks	Topics			
1	Introduction			
2	Basics of semiconductor physics			
3	Intrinsic & Extrinsic semiconductors			
4	Carrier Transfer			
5	PN-junction			
6	PN-diodes and their applications			
7	Midterm 1			
8	Special purpose diodes			
9	Bipolar junction transistor (BJT) I			
10	Bipolar junction transistor (BJT) II			
11	Bipolar junction transistor (BJT) III			
12	Midterm 2			
13	FET transistor I			
14	FET transistor II			
15	Revision			
Lecture 01	10/20/2018			

Syllabus

Text Book

S. M. Sze (2001). Semiconductor Devices: Physics and Technology, Wiley & So., ISBN 0471333727.

Recommended references supporting the course

B. Streetman, S. Banerjee (1999).Solid State Electronic Devices, Prentice Hall, ISBN 0130255386.

Robert L. Boylestad, Louis Nashelsky, (2013) **Electronic devices and circuit theory**, 11th edition, Pearson Education

Neamen D.A., (2007), Microelectronics Circuit Analysis and Design, McGraw Hill.

Lecture 01

Simulators Proteus OrCAD SPICE **Online simulator** http://www.falstad.com/circuit/index.html

Lecture 01

ILOS

- Theory
- Analysis
- Simulation
- Implementation

Lecture 01

ILOS

Upon successful completion of the course, students will be able to:

- Acquire some understanding in the fundamental electric and electronics principles.
- Describe the operation and i-v characteristics of diodes and transistors.
- Solve basic problems in electronic circuits.
- Implement different applications using basic electronic devices (diodes and transistors).
- Read and understand the datasheets of diodes and transistors to use the suitable parts in design.
- Design and analyze electronic circuits use computer packages (simulators).

Acquire better skills in performing the laboratory experiments.

Work as a team in laboratory sessions.

Lecture 01

Course Objectives

- Identify and describe operation of semiconductor devices through understanding of the semiconductor physics.
- Develop an understanding of the PN junction diode and its behavior.
- Develop an ability to analyze diode circuits and examine additional applications of the diode.
- Develop an understanding of the Bipolar Junction Transistor (BJT) and its operation.
- Identify and describe the different BJT configurations, DC biasing, and AC analysis.
- Develop an understanding of the Field Effect Transistor (FET) and its operation.
- Identify and describe the different FET configurations, DC biasing, and AC analysis.
- Develop an ability to analyze and design BJT and FET circuits.

Lecture 01

Course Objectives

CCE201

Course Objectives

CCE201

State two (2) differences between FET and BJT – LEVEL 1

Explain how depletion region is created in a pn junction? – LEVEL 2

Lecture 01

Sketch the output voltage, V_O if the input signal, V_i is a 12 V peak-to-peak square wave – LEVEL 3

Analyze the circuit below to calculate the base, collector and emitter currents – LEVEL 4

Lecture 01

• Compare the two characteristics for a conventional pn-junction diode and a Zener diode – LEVEL 4/5

 Evaluate the circuit below to determine whether the BJT is in cut-off, active or saturation mode – LEVEL
 5

Lecture 01

Design an n-channel MOSFET circuit is as shown in the figure - LEVEL 6

NOTE:

A <u>DESIGN</u> question generally means that you are required to calculate the values of the resistors.

CCE201

Lecture 01